Inside-out Evacuation of Transitional Protoplanetary Disks by the Magneto-rotational Instability

نویسنده

  • E. I. Chiang
چکیده

How do T Tauri disks accrete? The magneto-rotational instability (MRI) supplies one means, but protoplanetary disk gas is typically too poorly ionized to be magnetically active. Here we show that the MRI can, in fact, explain observed accretion rates for the sub-class of T Tauri disks known as transitional systems. Transitional disks are swept clean of dust inside rim radii of ∼10 AU. Stellar coronal X-rays ionize material in the disk rim, activating the MRI there. Gas flows from the rim to the star, at a rate limited by the depth to which X-rays ionize the rim wall. The wider the rim, the larger the surface area that the rim wall exposes to X-rays, and the greater the accretion rate. Interior to the rim, the MRI continues to transport gas; the MRI is sustained even at the disk midplane by super-keV X-rays that Compton scatter down from the disk surface. Accretion is therefore steady inside the rim. Blown out by radiation pressure, dust largely fails to accrete with gas. Contrary to what is usually assumed, ambipolar diffusion, not Ohmic dissipation, limits how much gas is MRI-active. We infer values for the transport parameter α on the order of a percent for the prototypical systems GM Aur, TW Hyd, and DM Tau. Because the MRI can only afflict a finite radial column of gas at the rim, disk properties inside the rim are insensitive to those outside. Thus our picture provides one robust setting for planet-disk interaction: a protoplanet interior to the rim will interact with gas whose density, temperature, and transport properties are definite and decoupled from uncertain initial conditions. Our study also supplies half the answer to how disks dissipate: the inner disk drains from the inside out by the MRI, while the outer disk photoevaporates by stellar ultraviolet radiation. Subject headings: accretion, accretion disks—X-rays: stars—stars: pre-main-sequence—solar system: formation—magnetohydrodynamics—planets and satellites: formation

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Halting Planet Migration in the Evacuated Centers of Protoplanetary Disks

Precise Doppler searches for extrasolar planets find a surfeit of planets with orbital periods of 3–4 days, and no planets with orbital periods less than 3 days. The circumstellar distance, R0, where small grains in a protoplanetary disk reach sublimation temperature (∼ 1500 K) corresponds to a period of∼ 6 days. Interior to R0, turbulent accretion due to magneto-rotational instability may evac...

متن کامل

Grain Retention and Formation of Planetesimals near the Snow Line in MRI-driven Turbulent Protoplanetary Disks

The first challenge in the formation of both terrestrial planets and the cores of gas giants is the retention of grains in protoplanetary disks. In most regions of these disks, gas attains sub-Keplerian speeds as a consequence of a negative pressure gradient. Hydrodynamic drag leads to orbital decay and depletion of the solid material in the disk, with characteristic timescales as short as only...

متن کامل

In pursuit of structures in protoplanetary disks

This brief summarizes work devoted to studying the linear stability of baroclinic protoplanetary Keplerian disks. This work largely builds on the foundation and fundamental results obtained by Barranco, Marcus & Umurhan (2000) (hereafter BMU) which presented a model to describe structures in weakly baroclinic Keplerian disks. Interest in protoplanetary disks has grown since the discovery of the...

متن کامل

Assembling the Building Blocks of Giant Planets around Intermediate Mass Stars

We examine a physical process that leads to the efficient formation of gas giant planets around intermediate mass stars. In the gaseous protoplanetary disks surrounding rapidly-accreting intermediate-mass stars we show that the midplane temperature (heated primarily by turbulent dissipation) can reach &1000 K out to 1 AU. Thermal ionization of this hot gas couples the disk to the magnetic field...

متن کامل

Disk Winds Driven by Magnetorotational Instability and Dispersal of Proto-planetary Disks

By performing local three-dimensional MHD simulations of stratified accretion disks, we investigate disk winds driven by MHD turbulence. Initially given weak vertical magnetic fields are effectively amplified by magnetorotational instability and winding due to differential rotation. Large scale channel flows develop most effectively at 1.5 2 times the scale heights where the magnetic pressure i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008